HCQ for COVID-19: real-time meta analysis of 303 studies at https://hcqmeta.com/
Another single study, details below:
Mirrored from original site to ensure content is not wiped from the internet like the post-jab Myocarditis trial was.
Therapies to Prevent Progression of COVID-19, Including Hydroxychloroquine, Azithromycin, Zinc, and Vitamin D3 With or Without Intravenous Vitamin C: An International, Multicenter, Randomized Trial
Published: November 25, 2021 (see history)
DOI: 10.7759/cureus.19902
Cite this article as: Ried K, BinJemain T, Sali A (November 25, 2021) Therapies to Prevent Progression of COVID-19, Including Hydroxychloroquine, Azithromycin, Zinc, and Vitamin D3 With or Without Intravenous Vitamin C: An International, Multicenter, Randomized Trial. Cureus 13(11): e19902. doi:10.7759/cureus.19902
Abstract
Background
COVID-19 is a global pandemic. Treatment with hydroxychloroquine (HCQ), zinc, and azithromycin (AZM), also known as the Zelenko protocol, and treatment with intravenous (IV) vitamin C (IVC) have shown encouraging results in a large number of trials worldwide. In addition, vitamin D levels are an important indicator of the severity of symptoms in patients with COVID-19.
Objectives
Our multicenter, randomized, open-label study aimed to assess the effectiveness of HCQ, AZM, and zinc with or without IVC in hospitalized patients with COVID-19 in reducing symptom severity and duration and preventing death.
Methods
Hospitalized patients with COVID-19 in seven participating hospitals in Turkey were screened for eligibility and randomly allocated to receive either HCQ, AZM, and zinc (group 1) or HCQ, AZM, zinc plus IV vitamin C treatment (group 2) for 14 days. The patients also received nontherapeutic levels of vitamin D3.
The trial is registered on the Australian and New Zealand Clinical Trial Registry ACTRN12620000557932 and has been approved by the Australian Therapeutic Goods Administration (TGA).
Results
A total of 237 hospitalized patients with COVID-19 aged 22-99 years (mean: 63.3 ± 15.7 years) were enrolled in the study. Almost all patients were vitamin D deficient (97%), 55% were severely vitamin D deficient (<25 nmol/L) and 42% were vitamin D deficient (<50 nmol/L); 3% had insufficient vitamin D levels (<75 nmol/L), and none had optimal vitamin D levels.
Of the patients, 73% had comorbidities, including diabetes (35%), heart disease (36%), and lung disease (34%).
All but one patient (99.6%; n = 236/237) treated with HCQ, AZM, and zinc with or without high-dose IV vitamin C (IVC) fully recovered. Additional IVC therapy contributed significantly to a quicker recovery (15 days versus 45 days until discharge; p = 0.0069).
Side effects such as diarrhea, nausea, and vomiting, reported by 15%-27% of the patients, were mild to moderate and transient. No cardiac side effects were observed.
Low vitamin D levels were significantly correlated with a higher probability of admission to the intensive care unit (ICU) and longer hospital stay.
Sadly, one 70-year-old female patient with heart and lung disease died after 17 days in ICU and 22 days in the hospital. Her vitamin D level was 6 nmol/L on admission (i.e., severely deficient).
Conclusions
Our study suggests that the treatment protocol of HCQ, AZM, and zinc with or without vitamin C is safe and effective in the treatment of COVID-19, with high dose IV vitamin C leading to a significantly quicker recovery.
Importantly, our study confirms vitamin D deficiency to be a high-risk factor of severe COVID-19 disease and hospitalization, with 97% of our study’s patient cohort being vitamin D deficient, 55% of these being severely vitamin D deficient, and none had optimal levels.
Future trials are warranted to evaluate the treatment with a combination of high-dose vitamin D3 in addition to HCQ, AZM, and zinc and high-dose intravenous vitamin C.
Introduction
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or COVID-19, has affected millions of people worldwide. COVID-19 was first reported by the World Health Organization in December 2019 and was declared a worldwide pandemic in March 2020. Exploring therapies potentially of benefit for COVID-19 has been a public health emergency.
SARS-CoV-2 enters cells by binding to the ACE2 receptor. Higher blood levels of ACE2 reflect shedding from the myocardium and pulmonary epithelium and identify patients who are vulnerable to the development of life-threatening complications.
Early in the pandemic, the combination of hydroxychloroquine (HCQ), azithromycin (AZM), and zinc, also known as the Zelenko protocol, had shown great promise in the treatment of COVID-19 [1,2].
In vitro, chloroquine increases the endosomal pH required for the virus to fuse with cells and interferes with the glycosylation of SARS-CoV-2 cell receptors, thereby blocking viral infection [3,4]. Investigators performed a time-of-addition assay, which showed that chloroquine is effective at both the entry and post-entry stages of the SARS-CoV-2 infection in cells. Hydroxychloroquine has greater in vitro potency than chloroquine against SARS-CoV-2 and, because of its enhanced safety profile, can be given at higher doses than chloroquine [5].
As of October 2021, a meta-analysis of more than 290 worldwide trials involving more than 412,000 patients found that HCQ significantly reduced morbidity and mortality in patients with COVID-19. Specifically, when HCQ is used in early treatment, a meta-analysis of 32 studies involving more than 54,600 patients suggested HCQ to improve symptoms and prevent death by 64%-75% (all early treatment studies (n = 32): RR, 0.36 (0.29-0.46), p < 0.0001; early treatment studies reporting mortality (n = 13): RR, 0.25 (0.16-0.40), p < 0.0001) [6].
Azithromycin is a macrolide antibiotic that has been found to inhibit the viral tropism and replication of Zika and Ebola viruses [7,8]. An in vitro study has shown the activity of azithromycin (AZM) in combination with hydroxychloroquine (HCQ) against SARS-CoV-2 [9].
In addition, the effectiveness of this combination therapy of HCQ and AZM, when used early, as was demonstrated in a clinical study involving 83 patients in Turkey, reduced recovery time and shortened hospital length of stay [10].
In therapeutic doses, HCQ has a high safety profile and works as a zinc ionophore, enabling zinc to enter a virus-infected cell, increasing intracellular zinc concentrations [11].
Zinc itself has antiviral properties, boosting both innate and humoral immunity [12]. High intracellular concentrations of zinc are essential to inhibit viral replication and proliferation, including coronavirus RNA-dependent RNA polymerase activity [13].
The Zelenko COVID-19 treatment protocol consists of the following triple therapy for five consecutive days in addition to standard supportive care: zinc sulfate (220 mg capsule once daily, containing 50 mg elemental zinc), HCQ (200 mg twice daily), and AZM (500 mg once daily) [2].
In addition, intravenous vitamin C (IVC) has known immune-stimulating and antiviral properties [14] and had shown promise as a treatment for acute respiratory syndrome and pneumonia [15]. Recent studies reported on the benefits of IVC therapy for COVID-19 [16,17].
Furthermore, a large number of studies (n > 200) have demonstrated low vitamin D levels to be a risk factor for the severity of COVID-19 symptoms and hospitalization [18-20].
Adequate vitamin D levels are of great importance in the prevention of respiratory infections, as vitamin D protects against pathogens including viruses via the innate and adaptive immune systems, involving white blood cells and T-cells [21].
In our study, we aimed to assess the optimal treatment protocol for hospitals to consider in their treatment for patients with COVID-19, in order to reduce the severity and duration of symptoms and save lives. Patients presenting at hospitals with COVID-19 symptoms were randomly allocated to the Zelenko protocol (HCQ + AZM + zinc) or the Zelenko protocol plus IV vitamin C.
All enrolled patients also received supplementation of 5000 IU/day of vitamin D3, an adequate dose if levels of vitamin D are insufficient (51-75 nmol/L); however, this dose is considered inadequate for vitamin D deficiency (<50 nmol/L).
Materials & Methods
Trial design and participants
Our study is an international, multicenter, open-label, randomized controlled trial evaluating the efficacy and safety of therapies with hydroxychloroquine (HCQ), azithromycin (AZM), zinc, and vitamin D3 alone (group 1) or HCQ + AZM + zinc in combination with IV vitamin C (group 2) in hospitalized patients with COVID-19. For stage 1 of the trial, we aimed to recruit 200 patients.
The trial was conducted in Australia and Turkey between January and June 2021. Stage 1 of the trial took place primarily in Turkey and involved seven participating hospitals in Eskisehir, Elazig, Istanbul, Erzincan, and Izmir.
The trial was approved by the National Health and Medical Research Council (NHMRC)-endorsed National Institute of Integrative Medicine (NIIM) Human Research Ethics Committee in Australia, the Turkish Ethics Committees at the Ministry of Health in Turkey, and participating hospitals.
The trial is registered on the Australian and New Zealand Clinical Trial Registry ACTRN12620000557932 and has been approved by the Australian Therapeutic Goods Administration (TGA).
All eligible participants provided electronic written informed consent.
Inclusion criteria
The inclusion criteria were as follows: (1) age ≥ 18 years, (2) informed written consent, and (3) diagnosis of active symptomatic COVID-19 confirmed by polymerase chain reaction (PCR) testing via nasal and/or oral swab at the time of enrolment for quantitative PCR assessment.
Exclusion criteria
The exclusion criteria were as follows: (1) known G-6-PDH deficiency; (2) contraindication to hydroxychloroquine, azithromycin, or vitamin C, allergy to study interventions, epilepsy, serious hearing or visual problems, advanced liver disease, history of severe depression, calcium oxalate stones, and pregnant or lactating women; (3) already receiving hydroxychloroquine, azithromycin, vitamin C >3 g daily, or an experimental antiviral; (4) history of fever (e.g., night sweats and chills) and/or acute respiratory infection (e.g., cough, shortness of breath, and sore throat) of more than seven days’ duration; (5) calculated creatinine clearance of <30 mL/minute; (6) baseline electrocardiogram (ECG) showing QTc ≥ 470 for males and QTc ≥ 480 for females; and (7) receipt of a drug known to increase QTc, such as quetiapine, amiodarone, and sotalol.
Intervention
Group 1 received HCQ + zinc + AZM + vitamin D3, whereas group 2 received vitamin C + group 1 interventions. Hydroxychloroquine (HCQ) was given as 400 mg peroral (PO) once a day for one day, followed by 200 mg once a day for six days. Azithromycin (AZM) was given as 500 mg PO on day 1, followed by 250 mg PO once daily for four days. Zinc citrate was given as 30 mg elemental zinc PO daily for 14 days. Vitamin D3 was given as 5,000 IU PO daily for 14 days. IV vitamin C (sodium ascorbate) was given as 50 mg/kg every six hours on day 1, followed by 100 mg/kg every six hours (four times daily, 400 mg/kg/day) for seven days (average: 28 g/day; maximum dose: 50 g/24 hours for those weighing more than 125 kg).
Data collection
Project management and data collection were carried out by appointed teams at the participating sites.
The participants’ gender, age, disease severity, comorbidities (smoking, diabetes, heart disease, lung disease, and immunosuppression), other medications, and trial outcomes were entered into an electronic online database using Microsoft Forms questionnaires.
Outcomes
Primary Outcome
The primary outcome was mortality or need for invasive mechanical ventilation at any time in the first 15 days from enrolment.
Secondary Efficacy Outcomes
The secondary efficacy outcomes (measured at both 15 and 45 days from enrolment) are mortality, invasive mechanical ventilation, need for humidified high-flow oxygen, admission to the intensive care unit (ICU), days in the hospital, days in the ICU, renal replacement therapy, and extracorporeal support.
The secondary efficacy outcomes also include the World Health Organization (WHO) Master Protocol ordinal score at day 15 as follows: (1) not hospitalized, no limitations on activities; (2) not hospitalized, limitation on activities; (3) hospitalized, not requiring supplemental oxygen; (4) hospitalized, requiring supplemental oxygen; (5) hospitalized, on noninvasive ventilation or high-flow oxygen devices; (6) hospitalized, on invasive mechanical ventilation or ECMO; and (7) death.
Secondary Safety Outcomes
The secondary safety outcomes are QTc prolongation (>500 ms) 24 hours following the initial dose of study drugs, serious ventricular arrhythmia (including ventricular fibrillation) or sudden unexpected death in the hospital, and any of the following adverse events in the first 10 days from enrolment: diarrhea, grade 2 or greater; nausea, grade 2 or greater; and vomiting, grade 2 or greater (Appendices).
Adaptive design features
The study was overseen by the Steering Committee consisting of chief investigators (TB, KR, and AS) and investigators at recruited sites. Independent Data Safety Monitoring Committees (DSMC) at participating hospitals monitored the progress and safety of the trial treatment and were to make recommendations on whether to continue, modify, or stop the trial for safety or ethical reasons.
Sample size calculation
In stage 1, the sample size required is n = 100 in each intervention arm in order to have a statistical power of 80% to detect a relative risk reduction (RRR) of 30% in the proportion progressing to mechanical ventilation or death, compared with standard care, and assuming a standard-of-care risk of progression of 30%. Since the participants were hospitalized, we assumed minimal (<1%) loss to follow-up. The total sample size was n = 200.
Analyses were performed using IBM SPSS version 26. Statistical significance was set at p < 0.05. The primary analysis of efficacy was conducted under the intention-to-treat principle; all randomized participants were included in the analyses. Descriptive analysis was conducted on all variables. Any variable differences between groups were included in analyses as covariates. Differences between the groups and comparison of continuous outcome variables were analyzed using Student’s t-test or analysis of covariance (ANCOVA) and chi-square analysis for dichotomous variables or Mann-Whitney U-tests for ranking variables. Correlations between variables were assessed using Pearson’s correlation coefficient.
Participants
In total, 237 hospitalized patients were enrolled in the study in Turkey. Table 1 outlines the number (%) of patients enrolled by hospital site.
Hospital site | Color circle on the map (Figure 1) | Number of patients enrolled | % Patients |
Eskisehir (ESOGU) | Blue | 138 | 60% |
Eskisehir (City Hospital) | 26 | ||
Elazig | Red | 67 | 25% |
Istanbul | Yellow | 1 | 10% |
Istanbul (University) | 24 | ||
Erzincan | Green | 13 | 4% |
Izmir | Purple | 2 | 1% |
Table 1: Number (%) of patients enrolled by hospital site
The average age of the patients enrolled was 63.3 ± 15.7 years, ranging from 22 to 99 years. Half of the patients were male and half were female. All findings were independent of age and gender (Table 2).
Out of the enrolled patients, 96% tested positive by the COVID-19 PCR test; those who tested negative had severe respiratory symptoms, such as cough and difficulty breathing (9/10), or had tested positive with a COVID-19 antibody test (1/10).
A small number of patients had recently received a vaccination: 2/230 (3%) reported to have received a flu vaccination and 5/232 (2%) had received a COVID-19 vaccination at the time of the study.
Of the participants, 73% had comorbidities, including diabetes (35%), heart disease (36%), lung disease (34%) or were heavy smokers (41%), cancer (10%), or autoimmune disease (3%) (Table 2).
Almost all hospitalized patients with COVID-19 enrolled in the study were vitamin D deficient (97%), 55% were severely vitamin D deficient (<25 nmol/L) and 42% were vitamin D deficient (<50 nmol/L); 3% had insufficient vitamin D levels (<75 nmol/L), and none had optimal vitamin D levels (Table 2, Figure 2).
Variable | N (%)/mean ± SD | Comment |
Hospitalized patients/outpatients | 237 (90%)/29 (10%) | Only hospitalized patients were included in the analysis. |
Gender (M/F) | 119 (50%)/118 (50%) | |
Age (years) | 63.3 ± 15.7 (range: 22–99) years | |
COVID-PCR (positive/negative) | 227 (96%)/10 (4%) | 9/10 with negative PCR had severe respiratory symptoms (cough/difficulty breathing). |
Flu/COVID-19 vaccination | 7/230, 5/232 | |
Days unwell at enrolment | 4 ± 3 (range: 1–30) | |
Vitamin D level (nmol/L) | 24.1 ± 9.2 (range: 2–64) | |
Vitamin D categories (Figure 2) | ||
Severely deficient (<25 nmol/L) | 131 (55%) | The majority were deficient in vitamin D; half were severely deficient. |
Deficient (25–50 nmol/L) | 99 (42%) | |
Insufficient (51–75 nmol/L) | 7 (3%) | |
Optimal (>75 nmol/L) | None | |
Zinc (umol/L) | 17.6 ± 4.4 (range: 5–34) | |
Deficient (<14 umol/L) | 49 (21%) | |
Normal (14–23 umol/L) | 169 (71%) | |
Excess (>23 umol/L) | 19 (8%) | |
Mg (mg/dL) | 1.88 ± 0.27 | |
Deficient (<1.7 mg/dL) | 48 (20%) | |
Normal (1.7–2.2 mg/dL) | 177 (75%) | |
Excess (>2.2 mg/dL) | 12 (5%) |
Variable | N (%) |
Comorbidities (1+) | 172 (73%) |
Diabetes | 82 (35%) |
Heart disease | 86 (36%) |
Lung disease | 56 (34%) |
Heavy smoker | 98 (41%) |
Cancer | 10 (4%) |
Autoimmune disease | 7 (3%) |
Biomarkers (cardiopulmonary – abnormal) | |
Prothrombin | 28 (12%) |
D-dimer | 40 (17%) |
Fibrin + FDP | 37 (16%) |
Troponin | 46 (19%) |
BNP | 32 (14%) |
Table 2: Participant characteristics
Original trial (mirrored to ensure it was preserved):
https://www.cureus.com/articles/76496-therapies-to-prevent-progression-of-covid-19-including-hydroxychloroquine-azithromycin-zinc-and-vitamin-d3-with-or-without-intravenous-vitamin-c-an-international-multicenter-randomized-trial